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Abstract: We present a semi-supervised online method for novelty detection and evaluate its performance for radio astronomy
time series data. Our approach uses sparse, adaptive eigenbases to combine (1) prior knowledge about uninteresting signals with
(2) online estimation of the current data properties to enable highly sensitive and precise detection of novel signals. We apply
Semi-Supervised Eigenbasis Novelty Detection (SSEND) to the problem of detecting fast transient radio anomalies and compare
it to current alternative algorithms. Tests based on observations from the Parkes Multibeam Survey show both effective detection
of interesting rare events and robustness to known false alarm anomalies. © 2012 Wiley Periodicals, Inc. Statistical Analysis and
Data Mining, 2012
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1. INTRODUCTION

Recent discoveries in high time resolution radio astron-
omy data have drawn attention to a new class of sources.
Fast transients are rare pulses of radio-frequency energy
lasting from microseconds to seconds that might be pro-
duced by a variety of exotic astrophysical phenomena
[1–4]. For example, X-ray bursts, neutron stars, active
galactic nuclei, and extraterrestrial intelligence (ETI) are
all potential sources of short-duration transient radio sig-
nals. Such events are often discovered serendipitously in
data collected for other purposes. These transients are gen-
erally faint and subtle, so improved detection algorithms
can directly benefit all such commensal monitoring. Exist-
ing detection approaches rely on a dispersed pulse model of
the signal shape. This paper presents a new method for ana-
lyzing real-time high-resolution radio astronomy data that
operates without this model assumption. Therefore, it can
potentially detect a far broader class of anomalous events
in real time, as well as unexpected events that do not match
a known profile.

We have formulated fast transient monitoring as a time
series statistical anomaly detection problem [5,6]. The main
challenges of our domain are:
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• High dimensionality: Signals of interest span multiple
antenna power measurements that could include
hundreds of time steps and frequency channels.

• Real time processing: With the exception of a few
dedicated surveys, most high time resolution data is
too voluminous to archive. Therefore, events must
be detected in real time to select only the most
interesting candidates for storage and later exhaustive
analysis.

• Nonstationarity: Background noise characteristics
change over time on medium to long scales, manifest-
ing as narrow-band noise or large-scale gain fluctua-
tions that change with hardware and observing con-
ditions. Detection of anomalous ‘fast’ signals should
be robust to these effects.

• False alarms: Certain known classes of events,
such as momentary Radio-Frequency Interference
(RFI), are not astronomically interesting but are
easily mistaken for fast transients. It is important to
avoid flagging these events as novel to avoid filling
the detection buffer with these false alarm events.
Further, false alarms waste valuable astronomer time
in reviewing the results.

This work proposes a new solution that learns a low-
dimensional linear manifold for describing the ‘normal’
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data. The novelty of our approach lies in combining basis
vectors learned in an unsupervised, online fashion from
the data stream with supervised basis vectors learned in
advance from known false alarms. We thereby achieve
adaptive, data-driven anomaly detection that also exploits
prior domain knowledge about signals that may be
statistically anomalous but are not scientifically interesting
(and should therefore be ignored). We identify truly
interesting anomalies by compressing and reconstructing
the data [7] using the combined basis. High reconstruction
error indicates a signal that does not match the learned
profile of the normal data. The unsupervised component
uses the incremental method of Ross et al. [8,9], an efficient
online algorithm that can run in real time.

We evaluated semi-supervised novelty detection using
data from the Parkes Multibeam Survey. This data set was
originally collected to search for pulsars, which are astro-
nomical sources that emit radio pulses at regular periods.
However, several nonpulsar anomalies have recently been
discovered in this dataset [10], making it a compelling test
case. We found that by explicitly filtering known false
alarm patterns, semi-supervised anomaly detection yields
significantly better performance than state-of-the-art tran-
sient detection methods. This method shows promise for
use in current and future astronomical surveys, including
data to be collected by the Square Kilometre Array, a radio
telescope currently under development that will be 50 times
more sensitive than any existing instrument.

We presented the core idea of Semi-Supervised Eigen-
basis Novelty Detection (SSEND) at the October 2011
NASA Conference on Intelligent Data Understanding [11].
This paper enhances SSEND by using local context to iso-
late false alarm signals from their incidental background.
This minor change significantly improves precision (see
Section 3.2 and Fig. 7). We also show a sparse PCA formu-
lation which offers better interpretability for known unin-
teresting signals (Section 3.2). More generally, this sparse
version demonstrates how the basic SSEND approach can
incorporate alternative basis learning techniques.

2. RELATED WORK

Generic approaches to anomaly detection are data-driven:
they typically learn a representation of the ‘normal’ or
uninteresting data, then identify any observations that do
not match this model. One such method is one-class sup-
port vector machine (SVM) classification [12], in which an
SVM is trained only on examples from the normal class and
then detects any new data belonging to a different, previ-
ously unobserved class. More recent efforts seek to include
user-labeled examples. Blanchard et al. [13] propose a
semi-supervised technique that trains a classifier using two

kinds of data: labeled data known to be normal and an addi-
tional unlabeled sample that may contain anomalous data.
Both approaches aim to train a binary classifier that labels
new items as either ‘normal’ or ‘anomalous’. The Blanchard
technique further accommodates an upper limit on the false
anomaly detection rate. Our approach differs from these
methods in that it specifically incorporates known examples
of false alarms to further improve the system’s precision. In
addition, our system is designed for online operation rather
than batch processing of previously collected data.

In contrast with statistical novelty detection, radio
astronomers generally use physical models of the antici-
pated events. If the precise shape of the event is known
in advance, matched filtering provides maximum sensitiv-
ity to detect faint transient pulses. These models reflect the
fact that signals from remote astronomical sources are dis-
persed. As the signal travels through the interstellar medium
that lies between the source and the observer, it encounters
free electrons that absorb some of the signal’s energy and
delay its propagation. This affects lower frequency compo-
nents more than higher frequency components. The slight
difference accumulates over long distances and ultimately
causes a broadband signal to appear dispersed in time, so
that the lower frequency components arrive later.

Real-time transient detection typically uses incoherent
analysis which represents the data as a matrix of signal
powers channelized into discrete time and frequency bins.
The data is typically portrayed as a two-dimensional image
in which the axes correspond to time and frequency. The
pixel intensity shows observed power, the accumulated
squared voltage received by the antenna. Figure 1 (left)
shows a pulse from pulsar J0742-2822 that displays a
typical dispersed ‘sweep’.’ Dispersion manifests as a time
delay �tdelay that is inversely proportional to the signal’s
frequency. Following [14]:

�tdelay = 4.1ms
DM k

�ν2
GHz

(1)

Here �ν is the difference between the frequency of the
reference channel and the delayed channel. The amount
of dispersion, or the Dispersion Measure (DM), correlates
with the number of interfering electrons present between
the source and the observer [15]. It is commonly reported
in parsecs per cm3. For regions of constant electron density,
the amount of dispersion suggests the physical distance to
the source.

Current detectors for remote transient signals are typi-
cally tailored to the known properties of dispersion. Data is
exhaustively dedispersed using a variety of different candi-
date DMs [15,16]. Dedispersion provides a detection statis-
tic by summing across all frequency channels, applying an
appropriate temporal shift at each frequency to undo the
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Fig. 1 Examples of typical and atypical transient signals. The image at left shows a single pulse from pulsar J0742-2822, with a classic
dispersed pulse profile. Such signals can be found by inverting the dispersion effect prior to matched filtering. More exotic and poorly
understood phenomena, like the peryton signal pictured at right, do not match typical dispersion and could benefit from model-free
detection strategies with fewer assumptions. This example shows a distinctive ‘kink’ in the curved signal. The narrow horizontal lines
are narrow-band interference; such behavior is time-variable but not astronomically relevant and would ideally not affect the detection
decision. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

time delay of a given assumed DM. This tailored summa-
tion is equivalent to a matched filter, and increases detection
sensitivity over a naive sliding window detection using all
frequency channels. By seeking the maximum dedispersed
sum across many potential DMs, one can characterize the
signal (and roughly the distance to the source). A dedis-
persion search can also help separate genuine astronomical
signals from Radio Frequency Interference (RFI). Broad-
band RFI manifests as a vertical signal with no dedispersion
(DM = 0); the pulse originates locally and all frequencies
arrive simultaneously.

This approach has proven effective for the detection of
pulsars and other astronomical phenomena [1,3,4,17]. It
can be implemented efficiently to keep up with streaming
data using FPGAs, GPUs, or other parallel architectures;
dedispersion over multiple DMs is inherently highly
parallelizable. The weakness of this approach, however,
is that it is sensitive to only one kind of signal. While
dispersion is a known phenomenon of all remote signals,
some recently discovered sources (Fig. 1, right) exhibit
deviations from the expected shape which renders them
difficult to detect. Further, it is not known how many other
exotic source types may currently be overlooked because
of the detection method’s dependence on one kind of signal
model. The next section presents a more flexible strategy
that could operate in parallel with dedispersion searches,
providing the capability to detect both dispersed pulses and
unanticipated novel events.

3. APPROACH

We describe a new approach that combines (1) prior
knowledge about uninteresting signals with (2) online
estimation of the current data properties to enable flexible
detection of novel signals. We treat the data as a sequence of

observations that arrive sequentially from the antenna. We
combine n such observed data points xi ∈ R

d as columns
of a d × n data matrix X = [x1, x2, . . . xn]. Here, d is the
number of frequency channels observed at each time step.
The goal is to compute a discriminant function that maps
each observation to a novelty score, f (xi ) : R

d �→ R. The
discriminant value should be small for typical data but large
for interesting or novel data.

3.1. Constructing an Eigenbasis

We use the popular strategy of measuring the distance
from the signal to a low-dimensional manifold learned from
the data stream [7,18]. We will start by describing the
simpler case of novelty detection in a static (nonadaptive)
subspace. We hypothesize that the ‘regular’ data lies on a
linear subspace in R

d ′
with d ′ � d. Subtracting the data

mean x yields a translated matrix X̃ = [(x1 − x), (x2 −
x), . . . , (xn − x)]. Singular Value Decomposition (SVD)
provides X̃ = U�VT. The columns of U are the principal
components: an orthonormal basis with axes in the order of
decreasing data variance. We form a low-dimensional basis
A using the first d ′ columns of U. One can also compute
the matrix A via classical Principal Component Analysis
(PCA), for example, using the eigenvectors corresponding
to the largest eigenvalues of the covariance matrix X̃X̃T.

We quantify the novelty of observation xi using the
Euclidean distance to the subspace, equivalent to the
L2-norm reconstruction error after first transforming xi

into the low-dimensional basis and then reconstructing an
approximation x̂i . This leads to the following discriminant
function which is large for novel data and zero for points
on the linear manifold.

f (xi ) = ‖xi − x̂i‖ = ‖(xi − x) − AAT(xi − x))‖2. (2)
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Algorithm 1 Ross et al. Algorithm for Sequential Eigen-
basis Updates.

The eigenvalue decomposition makes computing A
difficult for large n. However, it is important that our
basis accommodate large data sets and long-timescale
changes in the background. One solution is to periodically
recompute the entire matrix A in batch mode using a recent
subset of the data. In this work we employ the online
approach of Ross et al. [8,9] for efficient online updates
to the mean x and eigenbasis A. This approach updates an
SVD decomposition defined by some previous data X̃p =
Up�pVT

p. Each block update has a data matrix Xq with
mean xq and decomposition X̃q = Uq�qVT

q . This gives
a combined dataset Xr = [Xp|Xq ]. Fortunately one can
compute an updated mean xr and eigenbasis X̃r = Ur�rVT

r

without having to store the old data explicitly. We refer the
reader to the original work [8] for details, but summarize
their approach in Algorithm 1. It relies on the widely-
studied R-SVD procedure [19] which exploits the fact that
a low-rank update to the eigenbasis is decomposable into
efficient block operations. The method extends R-SVD to
the case where the data are not assumed to have zero mean.

An advantage of the Ross et al. method is that one can
downweight the old basis to introduce a forgetting factor
that allows the influence of old data to decay gradually
as new points are added. This lets the basis shift to
track a nonstationary distribution, and it accommodates
observations of arbitrary length.

3.2. Semi-Supervised Eigenbases

Automated novelty detection should exclude rare events
that are known to be uninteresting. In particular, one might
anticipate specific false alarms due to instrument noise,
interference, or other mundane but intermittent phenomena.
Alternatively, a human user could provide feedback on
previous detections that turned out to be uninteresting. We
incorporate information about these known false alarms
with a second basis trained to model rare or anomalous,
but uninteresting, patterns. Our semi-supervised novelty
detection method uses a combined subspace with both
supervised and unsupervised components. It therefore

adapts to long-term background trends while still excluding
known false alarms. Algorithm 2 summarizes SSEND.

SSEND has both offline and real time elements (shown
visually in Fig. 2). Offline, we accumulate the false alarm
set of momentary events known to be uninteresting. These
timesteps will also contain incidental background noise that
is unrelated to the event itself, so we must take additional
steps to isolate the false alarm pattern from its local context.
We construct a data matrix Xc using the timesteps directly
prior to each event, and model them with a context basis
Uc using a procedure like PCA. We then project each false
alarm onto its context basis, leaving a residual value that
is the unique signal of that event (the part which is distinct
from its local background).

xs = xf − xc + UcUT
c (xf − xc). (3)

We concatenate the residuals into a dataset and train a
supervised basis Us . This is our false alarm model. At
runtime, we compute an adaptive mean xr and basis Ur

using the Ross et al. method as before, and define a
combined semi-supervised Uss = [Ur |Us] to span both the
supervised and the unsupervised data. We orthogonalize the
new basis using QR decomposition with the Gram–Schmidt
method. The reconstruction error with respect to the
combined model yields a more reliable novelty score.

Note that the proposed approach does not preserve
the mean of the initial false alarm distribution, which is
assumed to drift in a similar fashion as the mean of the
online distribution. User feedback would permit a more
sophisticated system that also updates the false alarm mean
and basis online, but we focus here on the simpler case
where all training occurs in advance.

The specific semi-supervised approach here is one of a
broader family of methods, where the bases to be combined
might be learned through many alternative techniques. In
particular, there are many options for the supervised portion
which occurs offline and does not have a real-time computa-
tional constraint. For centered data X̃s , classical PCA is tan-
tamount to identifying components z� which maximize the
magnitude of the projection onto the data covariance matrix:

z� = arg max
z

zT(X̃T
s X̃s)z s.t. zTz ≤ 1. (4)

In this paper, we introduce a further innovation designed
to improve the interpretability of the learned model. We
replace the PCA step with a sparse PCA formulation [20].
Specifically, we incorporate an L1 norm penalty on the
components.

z� = arg max
z

zT(X̃T
s X̃s)z − λ‖z‖1 s.t. zTz ≤ 1. (5)

This has the effect of driving basis components to zero,
with the λ parameter balancing variance maximization and
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Algorithm 2 Semi-Supervised Eigenbasis Novelty Detection (SSEND).

Compute basis Ur
using online PCA

Supervised basis Us
describes false alarms

Combine Us and Ur
into a semi-supervised model

Uss

False alarms

New
streaming data

Compute novelty score
(reconstruction error) for new

data using Uss

Pre-compute once
(can be slow)

Periodically update

Every time step
(must be fast)

Context basis UcContext
timesteps

Compute residuals

Novelty score

Fig. 2 Semi-supervised adaptive novelty detection concept. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

sparsity objectives. These sparse codebooks may bene-
fit interpretability, and can improve generalization perfor-
mance where the physical processes are themselves known
to be sparse.

4. EVALUATION

SSEND was motivated by applications in radio astron-
omy. We compared performance on a test set of radio
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Segment

Fig. 3 True anomalies: Peryton events from the Parkes multibeam survey. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Fig. 4 False anomalies: vertical stripes due to broadband RFI that are statistically anomalous but uninteresting.

array data using five linear and nonlinear novelty detection
algorithms: the traditional dedispersion approach, kernel
PCA novelty detection [7], one-class SVM novelty detec-
tion [12], unsupervised adaptive novelty detection using
PCA, and the proposed semi-supervised approach.

4.1. Data Set

We use a selected portion of data from the Parkes Multi-
beam Survey, an extensive search for Pulsars using the
Parkes radio telescope of CSIRO [17,21,22]. This instru-
ment views the sky simultaneously through 13 receivers,
effectively providing 13 independent antennas covering
adjacent, and slightly overlapping, areas in the sky.
Receiver measurements are recorded at high time reso-
lution and transformed into channelized power measure-
ments corresponding to the squared voltage response at
various discrete frequency channels. This specific data
sequence contains examples of events known as pery-
tons, first discovered by Burke–Spoloar and Bailes in their
analysis of Parkes pulsar surveys [10]. Perytons are still
poorly understood, and they are scientifically interesting
because they vary in frequency and approximate a disper-
sion curve. However, they do not exactly match a dis-
persion profile, and their spatial distribution in the sky
suggests that they are of terrestrial (possibly atmospheric)
origin.

In addition to these features, structured interference is
often visible in the form of channel-specific noise and gain
fluctuations appearing as horizontal stripes. Such noise is
pervasive and typical for highly sensitive, cryogenically
cooled receiver feeds. Our tests focus on approximately
5 min of observation time in each of the 13 receivers.

This span includes several tens of thousands of timesteps
recorded at a cadence of 0.125 ms in each of 96 frequency
channels near 1450 MHz. Figure 3 shows three examples
of perytons. The red rectangle shows the size of an example
data window used to construct xi .

Figure 4 shows some examples of false alarms that are
statistically uncommon but not scientifically interesting.
These specific examples are broadband pulses of Radio
Frequency Interference (RFI), probably emitted by some
local artificial source. Such features are rare enough that
they are not well-represented in an unsupervised eigenbasis,
but typical enough that they would dominate novelty
detection results if not handled explicitly.

4.2. Methodology

We average the data by a factor of 20 down to a
temporal resolution of 2.5 ms, and then create a data set
from a sequence of short nonoverlapping segments that
cross all 96 vertical frequency channels and 6 horizontal
timesteps. This segment width corresponds to a 15 ms
time interval, found to maximize performance across all
methods. We reorder each segment into a single column
vector x ∈ R

384. Finally, we unify data from all beams into
one large dataset, witholding five beams (38%) for training
purposes. These tests consider the proposed SSEND method
which combines supervised and unsupervised components
and reports reconstruction error fss(xi ). Here we trained the
subspace Us using 30 overlapping segments (Xs) drawn
from three manually-selected broadband RFI pulses. We
show results using both the original (dense) solutions and
the sparse PCA variation. For comparison, we also report
results from the original SSEND version published in earlier
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work that does subtract the local context of false alarm
training events [11].

For comparison, we also consider some alternatives
that are broadly representative of popular linear and
nonlinear anomaly detectors. First is a purely unsupervised
eigenbasis approach based on reconstruction error from a
low-dimensional basis fu(xi ). It does not explicitly account
for RFI. Another popular unsupervised method is the
one-class SVM novelty detection of Scholkopf et al. [12].
Here we use a radial basis kernel function selected with
a grid search, and treat each test point’s distance to
the decision boundary as a real-valued novelty score. A
nonlinear, unsupervised version is kernel PCA: a nonlinear
extension of PCA. Kernel PCA novelty detection first
maps the data to a higher (generally infinite) dimensional
features space, computes the principal components in
this space, projects the transformed data to a lower-
dimension manifold, and defines a novelty measure as the
reconstruction error in the feature-space. Kernel functions
allow the reconstruction error to be calculated without
explicitly mapping to the feature space [7]. However, this
method never explicitly calculates the principal components
so it cannot be used as an adaptive technique in the
manner discussed in Algorithm 2. Instead we use the
implementation of Hoffmann et al. [7]. We use a radial
basis kernel function with parameters selected by a grid
search.

Finally, we consider a state-of-the-art radio astronomy
solution that uses incoherent dedispersion and summation to
search DM values from 0 to 500. We correct each time step
separately for each DM, and use the maximum response
from all DMs as the novelty score fd(xi ). Time averaging
did not improve performance for the dedispersion so we
report the dedispersion approaches’ single-timestep result.
We used the 15 ms window for the other methods, which
we found to give the best overall performance. We used
equivalent preprocessing in all trials.

We identified the precise locations of all peryton events
(desired detections) noted in the study by Burke–Spolaor
et al. [10]. These appeared to some degree in all antennas,
although the signal strength and character varied somewhat
even for simultaneous observations. The concatenated
dataset provided 88 real novel events for our evaluation.
We assigned each peryton an enclosing time interval; any
detection in this range counted as having successfully
detected the peryton. We take the peryton to be present
in all beams even though the actual signal strength varies
across receivers. This does not matter for our performance
comparison since weak signals penalize all detection
methods equally.

We evaluated each method by first computing novelty
scores for the entire data set, sorting these scores across all
beams, and then counting the result of each trigger in order

of decreasing novelty. Each peryton can only be captured
once, though multiple triggers within the same event do
not count as false positives. However, any detection falling
outside a peryton interval counts as a false positive.

4.3. Results

A visualization of the unsupervised and supervised
bases learned by our method appears in Fig. 5. Here we
use the top 4 principal components as an unsupervised
basis with online updates from the data stream. These
eigensignals (Fig. 5, left) show high magnitude in the most
variable channels; at the time this eigensignal snapshot
was captured, such channels comprised the major axis
of variance for the data set. A supervised basis of
8 dimensions models the known broadband RFI. We show
the top eigensignals for both classical and sparse methods in
Fig. 5 center and right, respectively. Both models capture
the vertical profile of momentary RFI pulses at different
locations. The sparse basis (right) is clearly interpretable
as a combination of short additive broadband components.
Paired with either supervised option, the online PCA basis
can accurately reconstruct a slow shift in channelized
RFI conditions along with any additive RFI pulse. Note
that this image shows the orthonormal segments after QR
factorization.

Figure 6 compares novelty detection scores for the entire
observation sequence of the first test beam, computed with a
purely unsupervised basis (standard PCA), fu, and the semi-
supervised approach, fss . Interesting peryton events are
noted by black triangles; the other signal spikes correspond
to various kinds of RFI. Five peryton signals were barely
visible in the reconstruction error of either method, due
possibly to the alignment of nonoverlapping segments or
the inherently weak visibility of those events in this beam.
We exclude these five from the diagram for clarity. In
general SSEND responds to the novelty of peryton events
while filtering most of the RFI. In contrast, broadband
RFI contaminates the purely unsupervised approach; it
accounts for the three strongest responses by fu for this
sequence.

Figure 7 shows a Receiver Operating Characteristic
(ROC) curve describing the tradeoff in precision and recall
rates. We report the number of perytons captured for a
variety of false positive budgets, considering the semi-
supervised approach as well as the sparse semi-supervised
variant which uses sparse PCA for supervised learning
stage. False positive budgets beyond 10 are excessive
since this would represent greater than one detection event
for every 5 s of observations (an unrealistic burden on
manual post-analysis). Future commensal campaigns with
constant observations and higher data volumes will demand
even stricter limits. For this low error budget, SSEND
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Unsupervised
(Incremental PCA)

Supervised
(PCA)

Supervised
(Sparse PCA)

Fig. 5 Orthonormal principal components used to construct Uss from Ur and Us (dense or sparse). The unsupervised portion (left)
models channelized interference, while the vertical structures in the supervised portion represent momentary broadband RFI.
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Fig. 6 Semi-supervised learning filters out RFI events that would
otherwise dominate the detection results. This time series plot
shows per-timestep novelty evaluated for the first beam in the
test set. Not all perytons are clearly distinguishable in this beam.
[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

considerably outperforms the competing methods: the top
13 signals detected via fss are due to perytons, while the
kernel PCA technique detects ∼30 false-positives before
the first peryton, and the unsupervised method reports
more than 50 false positives before finding the first real
peryton. These runner-up methods require 250 and 200
false positives respectively before they match the error-free
retrieval rate of the semi-supervised approaches.

Notably, both dense and sparse SSEND offer comparable
performance. For completeness we also report performance
of the original SSEND algorithm first reported in [11]
which does not consider the local context around false
alarms. Moving to the version reported here produces a
slight, but perceptible, improvement. Additional hand-tuned
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Fig. 7 ROC curves comparing eigenbasis novelty detection
approaches with the traditional dedispersion search. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

RFI excision rules, such as a ban on zero-DM signals
that are likely to be terrestrial, might improve performance
further. Naturally, such rules are less general than a purely
learning-based approach and might filter other unanticipated
anomalies.

The preceding results form xi with a data segment
of 15 ms (six time steps). We evaluated sensitivity
to segment length (see Fig. 8). Segments of duration
10–15 ms performed best for this data set. It is possible
that smaller segments are susceptible to noise while larger
sizes dilute the perytons. It might improve performance for
large segments to use a higher-dimensional basis for the
unsupervised component. Such models might do a better
job of modeling temporal structure (such as switching
interference) that begins to appear at these scales.
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Fig. 8 ROC curves to assess the sensitivity to data segment sizes.

We also assessed the runtime of each method to
determine whether they could be used in a realistic real-time
setting. Using a single core of a modern desktop processor,
the runtime of the dedispersion search method averaged
0.16 s per DM for the entire subsampled sequence, or ≈80
s for a typical search over 500 DM values. This could be
divided easily among multiple processors to provide faster
processing for multiple beams. The eigenbasis approaches’
runtimes depend strongly on the size of the block updates
to the eigenbasis. For a single desktop processor core
performing block updates of size m = 100, the entire
observation from a single beam was processed at 5×
real time (≈10 s/beam for the entire dataset). The time
required was slightly larger (up to ≈20 s/beam) for smaller
block updates where constant-time overhead costs had
a larger impact. The accuracy of these techniques was
nearly indistinguishable for all block update sizes we tried.
Varying the segment sizes also affected run time by up to a
factor of two. Kernel PCA and one-class SVM performed
considerably slower than the dedispersion and eigenbasis
approaches as all computations were performed with an
RBF kernel representation of the data: a representation
of size |x|2 = 3842 for this work. In our experiments we
found these techniques required ≈200–400 seconds/beam
with block updates of m = 400. Furthermore, unlike the
dedispersion and eigenbasis techniques, the Kernel PCA
and one-class SVM computation times scale quadratically
with the size of m. This reduces the generality of
these methods, and in combination with their large
computational run-times, makes them infeasible as real-
time techniques. On the other hand, we found the
dedispersion and eigenbases approaches to be readily
employable for real-time use on general purpose computing
hardware.

5. DISCUSSION

SSEND applies to anomaly detection in domains with
real-time requirements, high-dimensional input, and prior
knowledge about false alarm events. Of course, it is not
necessary to incorporate false alarm information directly
into the novelty detection model as we have done here.
Instead a pre-classification could filter these events prior to
a purely unsupervised novelty detection stage. Nevertheless,
there may be other advantages to the combined approach of
SSEND. It is simple and easy to implement. The projection
shifts to reflect any underlying drift in the mean signal
levels, so that a basis trained on previous false alarms
remains relevant. Further work will investigate ways to
combine multiscale models when the temporal extent of
the interesting events is not known in advance. Finally,
application to the broader Parkes survey catalogue will
increase practical experience with the technique, and may
even reveal additional classes of RFI and astronomical
transient events.
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